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1 Abstract
High-throughput phenotyping and genotyping provide vast information resources to be used
in evaluation and selection of breeding materials, but their implementation has been limited
in alfalfa due to the complexity of the genetics and the perennial nature of the crop. Indica-
tors of forage growth and development can be measured inexpensively and non-destructively
throughout each regrowth cycle using vegetative indices (VI) collected by an unmanned
aerial vehicle (UAV) equipped with a multi-spectral camera. By considering VIs as ge-
netically correlated traits to end-use phenotypes such as forage yield and quality, potential
exists to reduce the phenotypic load by reducing the number of plots that must be harvested.
Random regression models are well suited for fitting longitudinal phenotypes, such as VIs
collected through time, and can be implemented to estimate growth curves for each popu-
lation under evaluation, assess the genetic variation in growth and its relation to end-use
products like forage yield and quality. Genetic relationships calculated from genome-wide
markers allow for information sharing, better model fitting and the ability to predict un-
observed materials. However, calculation of genetic relationships is problematic in alfalfa
because varieties are not genetically distinct individuals, but instead synthetic populations.
We demonstrate a population-level genotyping approach to estimate the genetic relatedness
between alfalfa populations using pairwise Fst statistics calculated from sequenced-based al-
lele counts in bulk samples. Using a diallel of historic alfalfa germplasm sources previously
evaluated at New Mexico State University, and a panel of Cornell alfalfa currently under field
evaluation, we demonstrate the efficacy of using genetic relationships between populations
to fit genotype-specific growth curves and predict the genetic merit of varieties and breeding
populations.
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2 Introduction
Genetic gain in alfalfa has approached stagnation in the past few decades, limiting benefits to
alfalfa farmers. Adoption of new breeding technologies has also lagged due to the complexity
of the genetics, a high phenotypic burden and a paucity of public funds for a crop that is
just one degree of separation too far from the consumer’s mouth, and interest. Evaluation
of breeding material requires multiple harvests per year for multiple years, limiting the
size and number of field trials. The low heritability of forage yield also demands extensive
replication, further limiting the number of breeding populations that can be evaluated. The
ability to screen more material will lead to higher effective selection intensities, and increase
the frequency of developing populations that outperform current varieties. This project
aims to determine how affordable new technologies including high-throughput genotyping
and phenotyping, can provide additional information to reduce the phenotypic burden while
providing insight into how genetic variability of growth and development leads to differential
forage yield.

High throughput phenotyping (HTP) technologies could drastically reduce the phenotypic
burden in alfalfa by replacing a plot harvester with a unmanned aerial vehicle equipped with a
multi-spectral camera for some harvests, locations, and/or replications. Quantitative genetic
models can be built to accurately predict forage yields from spectral imaging, especially given
that the harvested product is imaged directly. Images taken throughout the production years
of a stand can also provide insight into genotype by environment interactions (G×E), in which
varieties have differential growth responses under different conditions. Understanding the
genetic signal in differential growth response will allow for identification of breeding targets
and optimal population change for sets of predictable environmental conditions.

Inclusion of genome-wide markers can improve these types of prediction models by en-
abling related material to share information. These genomic prediction models can allow
for reduced replication, sparse testing and even prediction of unobserved populations. Esti-
mating realized genetic relationships in alfalfa is complicated by the fact that varieties are
not genetically distinct individuals. As an obligate outcrosser, alfalfa is typically bred on
a population level, where varieties are released as synthetics to avoid inbreeding and take
advantage of population-level heterosis. This has limited implementation of marker-based
selection because large numbers of individuals must be genotyped and inter-mated to avoid
inbreeding in future generations. Single individuals are not representative of a variety as a
whole, and genotyping many individuals from each variety is costly and restrictive.

As part of this study, we evaluated a new genotyping strategy for alfalfa, where DNA from
many individuals is bulked in a given breeding population or variety for genotyping. Because
much of quantitative genetics and selection theory hinges on population level parameters,
the current machinery can be easily adapted to breeding on a population level. By borrowing
ideas from population genetics, allele counts within each variety or breeding population, as
opposed to allele counts within each individual, can be used to estimate genetic relationships
between populations using pairwise Fst statistics (Weir and Hill 2002). This genotyping
strategy should allow for prediction of additive effects for genetic gain, as well as dominance
effects to exploit population level heterosis.

Development of an affordable, population-level genotyping method would need the ability
to count alleles in a given sample, a task well suited for sequence-based methods. Whole-
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genome resequencing of the nine historic alfalfa germplasm sources (Barnes et al. 1977;
Segovia-Lerma et al. 2004), as well as materials from the Cornell forage breeding project,
were used as a proof of concept to determine the efficacy of a sequenced-based population-
level genotyping while identifying sites most applicable to such a method. Whole-genome
sequences will be made publicly available for greater use within the community. We are
also currently collaborating with Breeding Insight to incorporate highly polymorphic regions
identified in these materials that can be used in a wide array of North American alfalfa
germplasm to help build an affordable genotyping platform.

In this report, we detail our findings for incorporating genome-wide population-level
markers and high-throughput phenotyping to reduce phenotypic burden, estimate genotype
specific growth curves, and how they are related to forage yield and quality.

Methodology

2.1 Plant materials

To help evaluate the efficacy of the proposed bulk genotyping method in a diverse back-
ground, remnant seed from a diallel study (Segovia-Lerma et al. 2004) was obtained from
Ian Ray at New Mexico State University. Segovia Lerma et al. (2004) created a half di-
allel by crossing all possible pairs of the nine historic North American germplasm source
populations, African, Chilean, Flemish, Indian, Ladak, M. falcata, M. varia, Peruvian, and
Turkistan (Barnes et al. 1977). The resulting 36 hybrid populations along with the 9 parental
populations were evaluated in the field in 1997 and 1998 near Las Cruces, NM in a repli-
cated complete block design. Forage dry matter content data from this experiment for five
harvests in each year was provided by Ian Ray at New Mexico State University (NMSU),
as well as AFLP genotyping data from the nine parental populations (1544 AFLP markers;
Segovia-Lerma et al. 2004).

Eight Cornell varieties and breeding populations were selected for sequence-based geno-
typing. These eight populations were established in a replicated variety trial along with seven
commercial populations with 5 replicates in Geneva, NY in the spring of 2017. Remnant seed
from the trial planting was obtained and used for sequence-based genotyping. Permission to
genotype the remaining seven commercial varieties was not obtained at the time of project
conception. Forage yield was measured using a plot flail harvester, and dry matter yield for
each plot was calculated from fresh forage weight and dry matter content samples. Forage
yield (FY) was collected for three cuts in 2018, 2019 and 2020. Only forage yields from cuts
where aerial imaging was conducted are included in this report, which consisted of regrowth
periods two and three in 2019, and regrowth periods one and two in 2020. Quality samples
from the second regrowth in 2019 and 2020 were harvested using standard practices, dried
and ground. These samples were submitted to Dairy One for quantification of percent crude
protein (CP) and percent neutral detergent fiber (NDF).

2.2 Population-level Genotyping

Whole genome resequencing of bulk samples from nine historic North American germplasm
sources, five diallel hybrid populations and eight Cornell varieties, was performed at Cornell
University. Two biological replicates of ‘Chilean’ and ’M. falcata’ from seed increases from
the original diallel parent populations (denoted ‘ChileanSeedInc’ and ’M. falcataSeedInc’,
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respectively) were also included as a control. One hundred seed from each population were
germinated, and 25 seed with radicle extension of 1-5 mm were bulk homogenized in a single
well for DNA extraction. DNA extraction and sequence library preparation was performed
by the Bioinformatics Research Center at Cornell University. Sequencing of these 24 samples
was performed on an Illumina NovaSeq 6000 with a S2 flowcell to produce approximate 1,000
Gbp of single paired-end 150 bp reads at Weill Cornell Medical to acheive approximately
50× coverage. Reads from each of the four bulk samples from each population were pooled
for alignment and variant calling.

Sequences were aligned to the Bionano tetraploid alfalfa genome assembly 3a.2, kindly
provided by the Noble Research Institute using the Burrows Wheeler alignment tool, bwa
(Li and Durbin 2009). Only reads with a map quality over 20 (i.e. p = 10−20 of mapping
position being wrong) were kept to minimize alignment to multiple sites. Bi-allelic variant
calls were performed using bcftools (Li 2011, SAMtools), and were further filtered based
on a minimum and maximum read count of 20 and 125, respectively for all genotyped
individuals. The minimum count allowed for reasonable estimation of allele frequencies,
while the maximum reduced the probability of multiple alignment, given duplications not
present in the reference genome. A final filter was imposed to remove sites with a global
minor allele frequency greater than 0.05.

The hybrid populations were genotyped ‘in silico’ using the allele frequencies of the
genotyped parental populations as

pa,k,ij =
1

2
(pa,k,i + pa,k,j) ∀ i 6= j,

where pa,k,i and pa,k,ij is the ith parent population allele frequency and the ijth expected hy-
brid population allele frequency, respectively, for the ath allele of the kth marker. Correlation
between the allele frequency estimates for the five hybrid populations that were sequenced,
and their expected allele frequencies based on their parent populations were calculated to
validate the ‘in silico’ approach.

Additive genetic relationships between populations were calculated from allele frequency
estimates within each population. This was done using two methods. First, a simple co-
variance matrix between lines was calculated from the matrix of allele frequencies, P, as
G = nK/tr(K), where K = (m− 1)−1P′P for m sites. Second, pairwise Fst statistics were
used to estimate the additive genetic relationships between populations using the results
from Weir and Hill (equation 7; 2002).The latter is relative to an unknown average between
population relatedness quantity. This constant does not affect predictive ability, as covari-
ances are relative to one another, but to keep all within population variances positive, we
added a constant of 1/2 to the entire Fst covariance matrix.

2.3 Aerial phenotyping

Aerial phenotyping commenced on July 5th, 2019 in the second year of forage production
shortly after the first cut on June 27th. A DJI Matrice 600 Pro unmanned aerial vehicle
(UAV) equipped with a Micasense Rededge-MX multi-spectral camera was used for all flights.
A flight plan was designed to obtain an 80% overlap in images collected at a flight speed of
2 m/s and an altitude of 20 m. Flights were conducted within 2 hours of solar noon on clear
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days when possible. A total of 40 flights were conducted on average every 4.3 days across
four harvests, with 10, 11, 12 and 7 flights for the cut 2 2019, cut 3 2019, cut 1 2020 and cut 2
2020, respectively. Four ground control points positioned at the four corners of the trial were
measured with a Trimble RTK-GPS, which was used to geo-locate plots. Orthomosacis were
constructed using Pix4D mapping software, and were subsequently uploaded into Imagebreed
(www.imagebreed.org), a plot image database developed by our lab (Morales et al. 2020), for
image processing and storage and vegetative index (VI) calculation at the plot level. All plot
level image data has been made publicly available at www.imagebreed.org, while phenotypes
and genotypes will be made publicly available at the time of publication, or by request.

Normalized difference vegetation indices (NDVI) were calculated from mean pixel values
of near infrared (NIR) and Red bands of plot level images as

NDV I =
NIR−Red
NIR +Red

. (1)

Normalized difference red edge indices (NDRE) were also constructed and analyzed, but
were found to be less predictive than NDVI (results not shown), therefore this report will
only focus on NDVI as the vegetative index.

2.4 Multivariate genetic mixed model

A multivariate mixed model was used to estimate genetic correlation between end-use traits,
and their genetic correlation to individual vegetative indices at different time points.

y = 1µ+ Xβ + Wg + e (2)

where the phenotypic observations of y = [y′1, . . . ,y
′
t]
′ for t traits, and Var(y) = U⊗G + R,

where U and R are the unstructured trait and error covariance matrices to be estimated,
and G is genetic the covariance between populations calculated from genetic markers.

When the number of traits to be considered is small, all traits can be included in a single
multivariate mixed model to estimate the k +

(
k
2

)
trait variance components (and k +

(
k
2

)
error variance components); however, as the number of traits increases the number of vari-
ance components to be estimated becomes intractable. For example, estimating the genetic
correlation between ten vegetative index time points and forage yield requires estimation of
11 variance components and 55 covariance components, which requires large data sets. For
this study, all traits were included in a single multivariate model if the number of traits was
≤ 4. When the number of desired comparisons was greater than 4, such as when compar-
ing all vegetative index time points with forage yield, separate bivariate models were fit to
estimate the genetic correlation in a pairwise fashion.

Bivariate models were also used for prediction of end-use traits, where a vegetative index
was observed for all plots, but end-use traits were only observed for some plots.

2.5 Genomic prediction

Cross validation of genomic prediction in the diallel was used to compare a sequence-based
approach for estimating genetic relationships to other strategies that cannot estimate allele
frequencies (i.e. dominant markers). The dominant AFLP markers from Segovia-Lerma et
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al (2003) were also used to construct hybrid population genotypes ‘in silico’ by summing the
AFLP scores for each parental pair, and subsequently used to calculate a genetic covariance
for comparison. A ‘leave-one-family-out’ strategy, in which phenotypic observations from all
hybrids formed from one of the nine parents, were removed and the genetic values of those
hybrids for forage yield across years were predicted and compared to the values estimated
from the data.

To evaluate the potential of using vegetative indices to reduce the phenotypic burden of
harvesting plots, two types prediction models were tested. The first model observed VIs for
all replications in each trial, but did not observe plot forage yield for one to four replications.
A bivariate linear mixed model was fit to estimate the genetic correlation between the most
informative VI and forage yield for a given harvest, and predict the genetic values of entries
for forage yield with the missing replications. The second model observed both forage yield
and one informative VI for two to three harvests, but only an informative VI for the remaining
one or two harvests. The genetic correlation of the informative VI with forage yield in
observed harvests was then used to predict the genetic value of entries in harvests with
only VI information. Genetic relatedness between lines was included to allow for better
estimation of genetic correlation parameters. As a control, we also performed predictions
using only genomic information, without the use of VIs, as well as using simple genotype
means from observed plots to predict the unobserved. Prediction accuracy was assessed as
the correlation between genetic values estimated as genotypic means within harvest using
all forage data and those predicted genetic values with missing forage yield data.

2.6 Growth Curves

Growing degree days (GDD) for each ith flight were calculated from January 1st of each year
in Imagebreed as

GDDi =
D∑

d=1

max(Cd) +min(Cd)

2
− 5◦C (3)

where D equals the Julian day of the flight, and Cd is the temperature in Celsius for the
dth day. Daily temperatures were sourced from the Geneva weather station on the site of
the trial (USC00303184; Global Historical Climatology Network Daily, NOAA 2020). GDD
were standardized to have a min and max of -1, and 1 for use as predictors for Legendre
polynomials in the random regression model. The base temperature of 5◦C is recommended
for calculating growing degree days for field grown alfalfa (Sharratt, Sheaffer, and Baker
1989).

Genotype specific growth curves were fit using all vegetative indices within a regrowth
cycle as well as the end-use phenotypes in the following random regression model:

y = 1µ+ Xβ + Zu + Wg + e (4)

where
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Table 1: Table of first 4 Legendre polynomial functions used in this study.

Symbol Degree Legendre polynomial function
l0 0 1
l1 1 x
l2 2 1

2
(3x2 − 1)

l3 3 1
2
(5x3 − 3x)

y =


y1

y2
...
yt

yp

 , Z =
[
l0 l1 l2 l3

]
(5)

and X is the incidence matrix for block effects within time points. yi are vectors of plot
level vegetative indices for each i ∈ 1, ..., t time points, and yp is the vector of an end-use
plot level phenotype. Vectors l0, l1, l2 and l3 are the evaluated functions, f(x), of the
first four Legendre polynomials for x growing degree days, standardized between -1 and 1
when y is a vegetative index, and 0 otherwise (see Table 1). The vector p = 1 when y is
a phenotype, and 0 otherwise, and is used to estimate the genotypic effect of the end-use
trait. The vectors, β, of fixed block effects within each time point and end-use phenotype,
u of Legendre function parameters for each genotype, and g of end-use trait estimates for
each genotype are estimated using restricted maximum likelihood implemented in remlF90
(Misztal et al. 2002).

An important benefit of using a random regression model with covariance functions, is
that the number of variance components that need estimated is limited (l+ 1) +

(
l+1
2

)
where

l is the degree of the Legendre polynomial function, plus one for the end-use phenotype. In
this model, estimated genotype-specific growth curves are actually deviations from a mean,
or average, growth curve, which could be called “genetic growth curve deviations”.

Var

(
u
g

)
=


σ2
c1 σ12 σ13 σ14 σ1g

σ2
c2 σ23 σ24 σ2g

σ2
c3 σ34 σ3g

Symm. σ2
c4 σ4g

σ2
g

⊗G (6)

where σ2
ci and σij are the variance and covariance parameters of the Legendre polynomial

coefficients, σ2
g and σgj is the genetic variance of the end-use trait and the covariance between

the end-use trait and the Legendre coefficients, respectively, and G is the genetic covariance
of lines calculated from allele frequencies estimates.

This random regression models allow for information sharing across genetically related
populations to estimate parameters of growth curve functions for each population, as well
as their correlation with the end-use phenotype. Block effects within each time point were
used to correct for spatial variability in the field, but no additional permanent environmental

7



effect was fit due to the relatively small physical size of the trial and number of entries.

Objectives
The objective of this study was to evaluate the potential for combining a population-level
genotyping approach with aerial imaging to model growth and development, reduce pheno-
typic burden and aid in genomic selection strategies.

Project Objectives:

1. Evaluate the efficacy of using a
sequence-based population-level bulk
genotyping approach to predict yield
performance in diverse and elite
germplasm.

2. Estimate the genetic correlations of
multi-spectral indices with forage
yield and quality using population-
level genomic relationships.

3. Determine efficacy of phenotype re-
duction using spectral indices.

4. Fit population specific growth curves
for each harvest using genomic rela-
tionships and spectral indices.

Project Results:

1. Pairwise Fst values serve as efficient
estimates of genetic relatedness be-
tween populations.

2. Genetic correlations between forage
yield and vegetative indices are high,
especially in first half of regrowth pe-
riod.

3. Vegetative indices were predictive of
forage yield and quality, but includ-
ing genetic covariance was more im-
portant.

4. Early growth tends to lead to higher
forage yields, but with lower quality.
Quality reduction likely related to ma-
turity.

3 Results
3.1 Efficacy of population-level sequenced-based genotyping approach

A total of 77,688,674 polymorphic sites were identified in the panel of 22 alfalfa populations.
Filtering to keep sites with at least 20, but no more than 125 reads to estimate allele fre-
quencies for each population produced a total of 273,939 sites. These were filtered to obtain
global allele frequencies of 0.1 < p < 0.9 across all populations, resulting in 89,908 sites
for estimating genetics relationships across populations. The drastic reduction of sites is
primarily due to sampling, where sites were only kept if every population had at least 20×
coverage at that site. Because a resequencing approach was used in this study, sites where all
populations had sufficient coverage were few, but should be less of a problem in a designed
sequence-based marker platform where expected coverage can be increased at little expense
if the number of targeted sites is relatively few (say < 100,000 sites).

Estimates of hybrid population allele frequencies based on parental population frequen-
cies were highly correlated with those observed in the five hybrid populations from the diallel
that were included in the sequencing, ranging from 0.88 to 0.91, and tended to cluster to-
gether (Figure 1). The two cases of biological replicates (‘Chilean’ and ‘ChileanSeedInc’, and
‘Mfalcata’, ‘MfalcataSeedInc’) were also highly correlated at 0.9 and 0.91 respectively, and
subsequently reflected by tight clustering. These high correlations confirm hybrid parentage
and the ability to construct hybrid genotypes in silico.
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Figure 1: Heat map of pairwise Fst values between populations, with rows and columns
sorted using hierarchical clustering. Brighter colors indicate higher Fst values, and
therefore higher additive genetic covariance between populations. Population names ending
with “Est” have been estimated from their respective parents’ allele frequencies.

The most genetically distinct population was M. falcata, highlighting its long recognition
as a subspecies of M. sativa, M. sativa subsp. falcata (Oakley and Garver 1917). Diallel
families tended to cluster together, with the least related parent tending to drive the clus-
tering (e.g. families with M. falcata). These results validate the ability of a sequenced-based
method to accurately sample alleles and estimate their frequency, even in bulk samples with
unequal numbers of cells per individual, given sufficient individuals are included in the bulk.

3.2 Genetic covariance between populations

3.2.1 Cornell materials

The off diagonal elements of the additive genetic covariance calculated as pairwise Fst values
or as the covariance of allele frequencies were correlated at 0.79 in the Cornell materials.
Neither performed uniformly better than the other for genomic prediction of additive forage
yield effects effects, but the pairwise Fst values tended to perform better for prediction,
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Table 2: Leave one out genomic prediction accuracy for genetic covariances estimated by
pairwise Fst or covariance of allele frequencies (covAF) in the Cornell trial in Geneva, NY.

Harvest Year Fst covAF
2 2019 0.27 0.43
3 2019 0.75 0.73
1 2020 0.51 0.24
2 2020 0.94 0.97
Sum of 4 harvests - 0.90 0.79

especially for the sum of the four harvests detailed in this report (Table 2). The higher trend
in prediction accuracy coupled with the foundation in population genetics theory, resulted
in pairwise Fst’s being used as the estimate of genetic relatedness for the remainder of this
report.

3.2.2 Historic germplasm diallel

Pairwise Fst’s (Weir and Hill 2002) were compared to relationships estimated from AFLP
data (1544 AFLPs; Segovia-Lerma et al. 2003)) to compare a sequenced-based marker plat-
form that can estimate allele frequencies with one that can only detect presence or absence
(i.e. dominant markers). Genomic predictive ability of yearly dry matter forage yield in the
diallel population was used to assess these two marker platform types. The high level of
genetic variability and relatedness in the diallel was demonstrated by an unusually high ge-
nomic predictability, with leave-one-family-out genomic prediction accuracies ranging from
0.55-0.97 (Figure 2). Fst’s showed increased or similar overall predictive ability over pedigree
or dominant markers (AFLPs), especially for the most highly unrelated family with the M.
falcata parent. This suggests that tracking allele frequencies at many loci better captures
relationships between sites and causal loci, rather than simply tracking familial relationships.

Importantly, this highlights the need of an affordable, medium-density sequence-based
marker platform that can estimate allele frequencies. We are currently collaborating with
Breeding Insight at Cornell University to include highly polymorphic and informative regions
that can distinguish a wide array of North American alfalfa germplasm into a marker panel
currently under development.

3.3 Phenotypic description

Trait means and heritabilities are shown in Table 3. Harvests with higher mean forage
yields tended to have lower heritability, suggesting that some stress may allow for better
genetic separation of populations. Most traits had significant genetic effects at P < 0.05
when analyzed using a simple ANOVA F-test that assumes lines are independent, with
the exception of all traits in the second harvest of 2019, and NDF in 2020. Heritabilities
increased when genetic relationships as calculated by pairwise Fst were used to capture
genetic relationships between populations, and therefore share information.
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Figure 2: Prediction accuracy using a leave one family out strategy for a diallel
population with 9 parental populations, and 36 hybrid populations of alfalfa. For each of
the nine parents, all entries with that parent were removed and predicted using the
remaining eight families and the additive genetic covariance estimated using pedigrees,
dominant markers (1544 AFLPs; Segovia-Lerma et al. 2003), or Fst statistics calculated
from variant frequencies determined by whole-genome resequencing.

3.4 Genetic parameters

Genetic correlations of forage yield between harvests were high (Table 4), but low enough to
warrant data collection across multiple harvests to get good estimates of total forage output,
as is standard practice. Error correlations between adjacent harvests within the same year
were quite high, suggesting there are environmental effects within years that have lagging
effects. For example, the negative effect of a particularly dry patch may carry over to the
next harvest because the ground is still dry. As expected, NDF is highly positively correlated
with forage yield, while protein is negatively correlated with both NDF and yield (Tables 5
and 6). These trends held true even in the second harvest of 2019, where there was little
genetic signal for quality traits.

3.5 Genetic relationships between NDVI and forage yield and quality

Bivariate models were used to estimate genetic correlations for all pairwise combinations of
time points and forage yield. NDVI time points tended to have very high genetic correlations
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Figure 3: Heritability (diagonal) of NDVI time points and their genetic correlations
(above diagonal) with other time points for four harvests in 2019 and 2020. White blocks
indicate that the model failed to converge. Genetic correlations were estimated in bivariate
models for all pairwise combinations of time points. Many genetic correlation parameters
were estimated on the boundary (i.e. very close to 1), and caused model convergence issues.
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Figure 4: Genetic correlations of NDVI time points with forage yield four harvests in
2019 and 2020. Open circles indicate genetic correlation parameter that were estimated on
the boundary (i.e. very close to 1). Genetic correlations were estimated in in bivariate
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13



Table 3: Trait means, heritability and ANOVA p-values for forage yield, crude protein
and neutral detergent fiber across 2 harvests in each of 2019 and 2020 for the eight Cornell
entries with genotypic information.

Trait Year Harvest Harvest Mean †h2iid
‡h2Fst

ANOVA P-value
Forage yield 2019 2 1.51 0.11 0.41 0.1751
Crude Protein 2019 2 0.18 0.04 0.21 0.3219
NDF 2019 2 0.47 0.14 0.49 0.1196
Forage yield 2019 3 0.99 0.31 0.69 0.0110
Forage yield 2020 1 2.65 0.24 0.62 0.0326
Forage yield 2020 2 1.44 0.63 0.87 < 0.0001
Crude Protein 2020 2 0.24 0.43 0.78 0.0012
NDF 2020 2 0.43 0.00 0.00 0.7195
† Broad Sense heritability estimated by treating entries as independent and identically
distributed
‡h2Fst

Narrow sense heritability estimated by allowing entries to have a covariance estimated
with pairwise Fst.

to adjacent time points (Figure 4) as well as to forage yield (Figure 3), so much that it created
a problem with model fitting and convergence. Many genetic correlation coefficients were
estimated on the boundary (i.e. very close to 1), and some models failed to converge at all.
While a larger data set may resolve such issues, it seems likely that there is a high degree of
genetic relationship between vegetative indices like NDVI and forage yield, indicating that
they should make good predictors of performance without having to observe the end-use
phenotype.

3.6 Using Vegetative indices to predict unobserved phenotypes

Informative VIs used for prediction were determined by heritability and genetic correlations,
and were at Julian days 194 and 223 (GDDs 1723 and 2590) for the second and third harvests
in 2019, and Julian days 125 and 183 (GDDs 198 and 1420) for the first and second harvest
in 2020.

Using vegetative indices to predict forage yield without phenotypic data yielded mixed
results. Generally, prediction of completely unobserved harvests was improved by using ge-
netic relationships, and was often improved further by observing an informative VI, although
this depended upon the harvest that was being predicted and which harvests were available

Table 4: Narrow sense heritability (diagonal), and genetic (above diagonal) and residual
(below diagonal) correlations of forage yield by harvest.

Harvest 2, 2019 Harvest 3, 2019 Harvest 1, 2020 Harvest 2, 2020
Harvest 2, 2019 0.11 0.63 0.85 0.71
Harvest 3, 2019 0.86 0.21 0.88 0.62
Harvest 1, 2020 -0.26 -0.14 0.40 0.74
Harvest 2, 2020 -0.06 0.05 0.35 0.71
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Table 5: Narrow sense heritability (diagonal), and genetic (above diagonal) and residual
(below diagonal) correlations of forage yield (FY) and quality traits, crude protein (CP)
and neutral detergent fiber (NDF) for Harvest 2, 2019.

FY 2019 CP 2019 NDF 2019
FY 2019 0.49 -0.99 0.99
CP 2019 0.49 0.38 -0.99
NDF 2019 0.25 -0.30 0.49

to train the model on. The results warrant caution for the use of NDVI as a surrogate for
forage yield. Further investigation with a larger study is needed to determine the efficacy
of using vegetative indices to replace a plot harvester. Inclusion of genetic relationships did
however, uniformly improve prediction of unobserved harvests over using simple means from
observed ones.

Inclusion of NDVI did not improve prediction of genetic values when some replicates were
missing 8. Instead allowing for genetic relatedness of populations was the best strategy to
predict yield with reduced replication. Adding the extra phenotype appears to add some
environmental error to the estimate of genetic merit for forage yield under reduced repli-
cations. This highlights the need to use genetic relationships when estimating the genetic
merit of new breeding materials, as well as providing a opportunity to reduce replication
and increase the number of entries in the trial. An increase in the number of potential
new populations will increase selection intensity and the likelihood of identifying superior
populations for future release as varieties.

3.7 Genotype specific growth curves

Shapes in growth curves differed for each harvest, but some trends were evident (Figure 5).
In particular, populations with faster regrowth tended to have higher yields than those with
slower regrowth, an observation that has no doubt not escaped forage breeders since the
profession has existed. The effect was less evident in harvest 1, 2020, the only harvest we
sampled after winter dormancy, but it is unclear if regrowth after winter is less important,
or if this was a unique event. Quality measures tended to follow their genetic correlations
with forage yield (see Table, with high protein (CP) associated with lower yields and high
digestible carbohydrates (NDF) associated with high yields, despite the lack of much genetic
variability for CP in 2019 and NDF in 2020 (Figure 6).

The L0 Legendre parameter coefficient, akin to an intercept, or “mean” genetic value was
consistently highly correlated with forage yield, while the linear (L1), quadratic (L2) and
and cubic (L3) Legendre polynomial components were more variable (Table 9). Higher order
Legendre polynomial coefficients also tended to be highly positively or negatively correlated
with one another, but these trends changed from harvest to harvest.

Table 6: Narrow sense heritability (diagonal), and genetic (above diagonal) and residual
(below diagonal) correlations of forage yield (FY) and quality traits, crude protein (CP)
and neutral detergent fiber (NDF) for Harvest 2, 2020.
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Figure 5: Genetic growth curve deviations, genetic growth curves with mean growth
curve, and the area under the genetic growth curve for forage yield in four harvests. Blue
= high FY, Red = low FY. 16
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Figure 6: Genetic growth curve deviations, genetic growth curves with mean growth
curve, and the area under the genetic growth curve for CP and NDF in two harvests. Blue
= high CP or NDF, Red = low CP or NDF.17



Table 7: Prediction accuracy of unobserved harvests for forage yield. Either a single
informative NDVI time point (VI) or no high throughput phenotype was observed (K and
iid) in unobserved harvests. When no high throughput phenotype was used, either
populations were allowed to have genetic relationships calculated from pairwise Fst’s’ (K)
or were considered independent (iid). For the iid method, simple means of observed plots
were used to predict the genetic merit of each population.

Unobserved Observed VI K iid
FY1 20 FY2 19 FY3 19 0.55 0.53 0.49
FY2 20 FY2 19 FY3 19 0.90 0.76 0.71
FY3 19 FY2 19 FY1 20 0.68 0.86 0.81
FY2 20 FY2 19 FY1 20 0.90 0.82 0.74
FY3 19 FY2 19 FY2 20 0.68 0.93 0.94
FY1 20 FY2 19 FY2 20 0.55 0.64 0.61
FY2 19 FY3 19 FY1 20 0.81 0.68 0.68
FY2 20 FY3 19 FY1 20 0.90 0.88 0.84
FY2 19 FY3 19 FY2 20 0.82 0.72 0.72
FY1 20 FY3 19 FY2 20 0.55 0.65 0.64
FY2 19 FY1 20 FY2 20 0.82 0.55 0.54
FY3 19 FY1 20 FY2 20 0.68 0.76 0.73
FY2 20 FY2 19 FY3 19 FY1 20 0.90 0.84 0.80
FY1 20 FY2 19 FY3 19 FY2 20 0.55 0.62 0.60
FY3 19 FY2 19 FY1 20 FY2 20 0.68 0.88 0.87
FY2 19 FY3 19 FY1 20 FY2 20 0.81 0.66 0.67

The area under the growth curve (AUGC) corresponded well with final forage biomass,
suggesting these growth curves can be used to estimate total photosynthate partitioning to
the harvested product, which in this case is above ground biomass. Mean growth curves
are subject to environmental effects, such as temperature and precipitation. The change in
genetic growth curve deviations from harvest to harvest suggests that varieties respond differ-
entially under different environmental stresses. Further investigation is needed to determine
if these environmental conditions had an effect on the mean as well as the gene.

In general, the number of populations under evaluation in this study was small, and a
better understanding of how growth curves are related forage production would need more
populations, and be evaluated from stand establishment through at least the third year. It
is unclear from this study what effect stand persistence has on these growth parameters, but
should be a target of future research.

4 Conclusion
We find that estimating genetic relationships between populations is a valid approach that
can be used for genomic prediction and selection, while drastically increasing predictability
of unobserved traits. High throughput phenotypes such as vegetative indices taken with
a multi-spectral camera equipped UAV have the potential to help reduce the phenotyping
necessary to get good estimates of population performance. There appears to be significant
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Table 8: Mean accuracy of genetic values when 1 to 4 replications of forage biomass data
are set to missing. Either a single informative NDVI time point (VI), or no high
throughput phenotype was observed (K and iid) for up to 4 reps for each harvest. When no
high throughput phenotype was used, either populations were allowed to have genetic
relationships calculated from pairwise Fst’s (K) or were considered independent (iid). For
the iid method, simple means of observed plots were used to predict the genetic merit of
each population.

# observed reps VI K iid
4 0.89 0.96 0.96
3 0.82 0.92 0.91
2 0.77 0.85 0.82
1 0.62 0.71 0.65

genetic variability for growth and development that is associated with forage yield and
quality, even in this small study. What is unclear from this study is to what degree these
curves and end use traits are influenced by dormancy ratings and maturity, and whether these
relationships can be changed. Clearly, the ideal variety will yield well, regrow quickly, have
high protein and high digestible carbohydrates while maintaining good stand persistence.
As we observe more populations in more environments, monitoring trials with UAVs has the
potential to start to dissect these relationships as the picture of how the genetics of growth
and development leads to better end-use traits. An important question will be how plasticity
in growth curves leads to yield and quality stability across varying environmental stressors
such as heat and drought.

This research has in part been used as preliminary evidence for submission of a grant
proposal to FFAR Seeding Solutions: with a combined budget of $767,605, and will include a
larger three year study of 24 alfalfa varieties evaluated at Cornell, and 24 varieties evaluated
for two years at New Mexico State University. The effects growth and development of other
crops, including wheat at Virginia Tech and other grain, fiber and oil crops from BASF and
Lima Grain will be investigated along with alfalfa in this FFAR project, pending a positive
funding decision.
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Table 9: Genetic correlations of Legendre polynomial parameters, L0, L1, L2, and L3 with
forage yield (FY) in all four harvests, and CP and NDF for harvest 2, 2019, and harvest 2,
2020.

Year 2019

Forage Yield Harvest 2

L0 L1 L2 L3 FY
L0 -0.99 0.88 0.28 0.76
L1 -0.87 -0.32 -0.77
L2 -0.10 0.42
L3 0.78

CP Harvest 2

L0 L1 L2 L3 CP
L0 -0.89 0.98 0.16 -0.76
L1 -0.95 -0.56 0.70
L2 0.31 -0.75
L3 -0.18

NDF Harvest 2

L0 L1 L2 L3 NDF
L0 -0.89 0.98 0.17 0.92
L1 -0.95 -0.57 -0.93
L2 0.31 0.94
L3 0.38

Forage Yield Harvest 3

L0 L1 L2 L3 FY
L0 0.04 -0.91 0.12 0.81
L1 -0.04 -0.98 -0.15
L2 -0.11 -0.95
L3 0.28

Year 2020

Forage Yield Harvest 1

L0 L1 L2 L3 FY
L0 0.12 -0.09 -0.65 0.80
L1 -0.81 -0.69 0.18
L2 0.62 0.17
L3 -0.49

Forage Yield Harvest 2

L0 L1 L2 L3 FY
L0 0.54 -0.99 0.72 0.95
L1 -0.55 -0.09 0.36
L2 -0.66 -0.91
L3 0.87

CP Harvest 2

L0 L1 L2 L3 CP
L0 0.30 -0.99 0.68 -0.96
L1 -0.19 -0.47 -0.22
L2 -0.74 0.94
L3 -0.73

NDF Harvest 2

L0 L1 L2 L3 NDF
L0 0.31 -0.99 0.69 0.83
L1 -0.19 -0.46 0.76
L2 -0.76 -0.76
L3 0.21
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